ar X iv : 0 71 1 . 26 23 v 3 [ m at h . O C ] 2 4 N ov 2 00 8 THE VPN TREE ROUTING CONJECTURE FOR OUTERPLANAR NETWORKS

نویسنده

  • DIRK OLIVER THEIS
چکیده

The VPN Tree Routing Conjecture is a conjecture about the Virtual Private Network Design problem. It states that the symmetric version of the problem always has an optimum solution which has a tree-like structure. In recent work, Hurkens, Keijsper and Stougie (Proc. IPCO XI, 2005; SIAM J. Discrete Math., 2007) have shown that the conjecture holds when the network is a ring. A shorter proof of the VPN Conjecture for rings was found a few months ago by Grandoni, Kaibel, Oriolo and Skutella (to appear in Oper. Res. Lett., 2008). In their paper, Grandoni et al. introduce another conjecture, called the Pyramidal Routing Conjecture (or simply PR Conjecture), which implies the VPN Conjecture. Here we consider a strengthened version of the PR Conjecture. First we establish several general tools which can be applied in arbitrary networks. Then we use them to prove that outerplanar networks satisfy the PR Conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 1 . 26 23 v 1 [ m at h . O C ] 16 N ov 2 00 7 THE VIRTUAL PRIVATE NETWORK DESIGN TREE ROUTING CONJECTURE FOR OUTERPLANAR NETWORKS

The VPN Tree Routing Conjecture is a conjecture about the Virtual Private Network Design problem. It states that the symmetric version of the problem always has an optimum solution which has a tree-like structure. In recent work, Hurkens, Keijsper and Stougie (Proc. IPCO XI, 2005; SIAM J. Discrete Math., 2007) have shown that the conjecture holds when the network is a ring. A shorter proof of t...

متن کامل

ar X iv : m at h / 04 11 06 2 v 1 [ m at h . O A ] 3 N ov 2 00 4 On automorphisms of type II Arveson systems ( probabilistic approach )

A counterexample to the conjecture that the automorphisms of an arbitrary Arveson system act transitively on its normalized units.

متن کامل

ar X iv : 0 80 5 . 48 34 v 3 [ m at h . C O ] 6 S ep 2 00 8 Loebl - Komlós - Sós Conjecture : dense case

We prove a version of the Loebl-Komlós-Sós Conjecture for dense graphs. For any q > 0 there exists a number n0 ∈ N such that for any n > n0 and k > qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at least k, then any tree of order k +1 is a subgraph of G.

متن کامل

ar X iv : m at h . C O / 0 41 16 10 v 1 2 7 N ov 2 00 4 CHAIN POLYNOMIALS OF DISTRIBUTIVE LATTICES ARE 75 %

It is shown that the numbers ci of chains of length i in the proper part L \ {0, 1} of a distributive lattice L of length l + 2 satisfy the inequalities c0 < . . . < c⌊l/2⌋ and c⌊3l/4⌋ > . . . > cl. This proves 75 % of the inequalities implied by the Neggers unimodality conjecture.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008